Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Groundwater for sustainable development ; 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2262351

RESUMEN

The ongoing COVID-19 contagious disease caused by SARS-CoV-2 has disrupted global public health, businesses, and economies due to widespread infection, with 676.41 million confirmed cases and 6.77 million deaths in 231 countries as of February 07, 2023. To control the rapid spread of SARS-CoV-2, it is crucial to determine the potential determinants such as meteorological factors and their roles. This study examines how COVID-19 cases and deaths changed over time while assessing meteorological characteristics that could impact these disparities from the onset of the pandemic. We used data spanning two years across all eight administrative divisions, this is the first of its kind––showing a connection between meteorological conditions, vaccination, and COVID-19 incidences in Bangladesh. We further employed several techniques including Simple Exponential Smoothing (SES), Auto-Regressive Integrated Moving Average (ARIMA), Auto-Regressive Integrated Moving Average with explanatory variables (ARIMAX), and Automatic forecasting time-series model (Prophet). We further analyzed the effects of COVID-19 vaccination on daily cases and deaths. Data on COVID-19 cases collected include eight administrative divisions of Bangladesh spanning March 8, 2020, to January 31, 2023, from available online servers. The meteorological data include rainfall (mm), relative humidity (%), average temperature (°C), surface pressure (kPa), dew point (°C), and maximum wind speed (m/s). The observed wind speed and surface pressure show a significant negative impact on COVID-19 cases (−0.89, 95% confidence interval (CI): 1.62 to −0.21) and (−1.31, 95%CI: 2.32 to −0.29), respectively. Similarly, the observed wind speed and surface pressure show a significant negative impact on COVID-19 deaths (−0.87, 95% CI: 1.54 to −0.21) and (−3.11, 95%CI: 4.44 to −1.25), respectively. The impact of meteorological factors is almost similar when vaccination information is included in the model. However, the impact of vaccination in both cases and deaths model is significantly negative (for cases: 1.19, 95%CI: 2.35 to −0.38 and for deaths: 1.55, 95%CI: 2.88 to −0.43). Accordingly, vaccination effectively reduces the number of new COVID-19 cases and fatalities in Bangladesh. Thus, these results could assist future researchers and policymakers in the assessment of pandemics, by making thorough efforts that account for COVID-19 vaccinations and meteorological conditions. Graphical Image 1

2.
Groundw Sustain Dev ; 21: 100932, 2023 May.
Artículo en Inglés | MEDLINE | ID: covidwho-2262352

RESUMEN

The ongoing COVID-19 contagious disease caused by SARS-CoV-2 has disrupted global public health, businesses, and economies due to widespread infection, with 676.41 million confirmed cases and 6.77 million deaths in 231 countries as of February 07, 2023. To control the rapid spread of SARS-CoV-2, it is crucial to determine the potential determinants such as meteorological factors and their roles. This study examines how COVID-19 cases and deaths changed over time while assessing meteorological characteristics that could impact these disparities from the onset of the pandemic. We used data spanning two years across all eight administrative divisions, this is the first of its kind--showing a connection between meteorological conditions, vaccination, and COVID-19 incidences in Bangladesh. We further employed several techniques including Simple Exponential Smoothing (SES), Auto-Regressive Integrated Moving Average (ARIMA), Auto-Regressive Integrated Moving Average with explanatory variables (ARIMAX), and Automatic forecasting time-series model (Prophet). We further analyzed the effects of COVID-19 vaccination on daily cases and deaths. Data on COVID-19 cases collected include eight administrative divisions of Bangladesh spanning March 8, 2020, to January 31, 2023, from available online servers. The meteorological data include rainfall (mm), relative humidity (%), average temperature (°C), surface pressure (kPa), dew point (°C), and maximum wind speed (m/s). The observed wind speed and surface pressure show a significant negative impact on COVID-19 cases (-0.89, 95% confidence interval (CI): 1.62 to -0.21) and (-1.31, 95%CI: 2.32 to -0.29), respectively. Similarly, the observed wind speed and surface pressure show a significant negative impact on COVID-19 deaths (-0.87, 95% CI: 1.54 to -0.21) and (-3.11, 95%CI: 4.44 to -1.25), respectively. The impact of meteorological factors is almost similar when vaccination information is included in the model. However, the impact of vaccination in both cases and deaths model is significantly negative (for cases: 1.19, 95%CI: 2.35 to -0.38 and for deaths: 1.55, 95%CI: 2.88 to -0.43). Accordingly, vaccination effectively reduces the number of new COVID-19 cases and fatalities in Bangladesh. Thus, these results could assist future researchers and policymakers in the assessment of pandemics, by making thorough efforts that account for COVID-19 vaccinations and meteorological conditions.

3.
Curr Opin Environ Sci Health ; : 100396, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2241705

RESUMEN

Wastewater-Based Epidemiological Monitoring (WBEM) is an efficient surveillance tool during the COVID-19 pandemic as it meets all requirements of a complete monitoring system including early warning, tracking the current trend, prevalence of the disease, detection of genetic diversity as well asthe up-surging SARS-CoV-2 new variants with mutations from the wastewater samples. Subsequently, Clinical Diagnostic Test is widely acknowledged as the global gold standard method for disease monitoring, despite several drawbacks such as high diagnosis cost, reporting bias, and the difficulty of tracking asymptomatic patients (silent spreaders of the COVID-19 infection who manifest nosymptoms of the disease). In this current reviewand opinion-based study, we first propose a combined approach) for detecting COVID-19 infection in communities using wastewater and clinical sample testing, which may be feasible and effective as an emerging public health tool for the long-term nationwide surveillance system. The viral concentrations in wastewater samples can be used as indicatorsto monitor ongoing SARS-CoV-2 trends, predict asymptomatic carriers, and detect COVID-19 hotspot areas, while clinical sampleshelp in detecting mostlysymptomaticindividuals for isolating positive cases in communities and validate WBEM protocol for mass vaccination including booster doses for COVID-19.

4.
Sci Total Environ ; 858(Pt 3): 159350, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2069671

RESUMEN

Wastewater based epidemiology (WBE) is an important tool to fight against COVID-19 as it provides insights into the health status of the targeted population from a small single house to a large municipality in a cost-effective, rapid, and non-invasive way. The implementation of wastewater based surveillance (WBS) could reduce the burden on the public health system, management of pandemics, help to make informed decisions, and protect public health. In this study, a house with COVID-19 patients was targeted for monitoring the prevalence of SARS-CoV-2 genetic markers in wastewater samples (WS) with clinical specimens (CS) for a period of 30 days. RT-qPCR technique was employed to target nonstructural (ORF1ab) and structural-nucleocapsid (N) protein genes of SARS-CoV-2, according to a validated experimental protocol. Physiological, environmental, and biological parameters were also measured following the American Public Health Association (APHA) standard protocols. SARS-CoV-2 viral shedding in wastewater peaked when the highest number of COVID-19 cases were clinically diagnosed. Throughout the study period, 7450 to 23,000 gene copies/1000 mL were detected, where we identified 47 % (57/120) positive samples from WS and 35 % (128/360) from CS. When the COVID-19 patient number was the lowest (2), the highest CT value (39.4; i.e., lowest copy number) was identified from WS. On the other hand, when the COVID-19 patients were the highest (6), the lowest CT value (25.2 i.e., highest copy numbers) was obtained from WS. An advance signal of increased SARS-CoV-2 viral load from the COVID-19 patient was found in WS earlier than in the CS. Using customized primer sets in a traditional PCR approach, we confirmed that all SARS-CoV-2 variants identified in both CS and WS were Delta variants (B.1.617.2). To our knowledge, this is the first follow-up study to determine a temporal relationship between COVID-19 patients and their discharge of SARS-CoV-2 RNA genetic markers in wastewater from a single house including all family members for clinical sampling from a developing country (Bangladesh), where a proper sewage system is lacking. The salient findings of the study indicate that monitoring the genetic markers of the SARS-CoV-2 virus in wastewater could identify COVID-19 cases, which reduces the burden on the public health system during COVID-19 pandemics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Estudios de Seguimiento , Aguas Residuales , Marcadores Genéticos , ARN Viral
5.
Sci Rep ; 12(1): 11120, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2028700

RESUMEN

The latest coronavirus pandemic (SARS-CoV-2) poses an exceptional threat to human health and society worldwide. The coronavirus (SARS-CoV-2) spike (S) protein, which is required for viral-host cell penetration, might be considered a promising and suitable target for treatment. In this study, we utilized the nonalkaloid fraction of the medicinal plant Rhazya stricta to computationally investigate its antiviral activity against SARS-CoV-2. Molecular docking and molecular dynamics simulations were the main tools used to examine the binding interactions of the compounds isolated by HPLC analysis. Ceftazidime was utilized as a reference control, which showed high potency against the SARS-CoV-2 receptor binding domain (RBD) in an in vitro study. The five compounds (CID:1, CID:2, CID:3, CID:4, and CID:5) exhibited remarkable binding affinities (CID:1, - 8.9; CID:2, - 8.7; and CID:3, 4, and 5, - 8.5 kcal/mol) compared to the control compound (- 6.2 kcal/mol). MD simulations over a period of 200 ns further corroborated that certain interactions occurred with the five compounds and the nonalkaloidal compounds retained their positions within the RBD active site. CID:2, CID:4, and CID:5 demonstrated high stability and less variance, while CID:1 and CID:3 were less stable than ceftazidime. The average number of hydrogen bonds formed per timeframe by CID:1, CID:2, CID:3, and CID:5 (0.914, 0.451, 1.566, and 1.755, respectively) were greater than that formed by ceftazidime (0.317). The total binding free energy calculations revealed that the five compounds interacted more strongly within RBD residues (CID:1 = - 68.8, CID:2 = - 71.6, CID:3 = - 74.9, CID:4 = - 75.4, CID:5 = - 60.9 kJ/mol) than ceftazidime (- 34.5 kJ/mol). The drug-like properties of the selected compounds were relatively similar to those of ceftazidime, and the toxicity predictions categorized these compounds into less toxic classes. Structural similarity and functional group analyses suggested that the presence of more H-acceptor atoms, electronegative atoms, acidic oxygen groups, and nitrogen atoms in amide or aromatic groups were common among the compounds with the lowest binding affinities. In conclusion, this in silico work predicts for the first time the potential of using five R. stricta nonalkaloid compounds as a treatment strategy to control SARS-CoV-2 viral entry.


Asunto(s)
Apocynaceae , Tratamiento Farmacológico de COVID-19 , Plantas Medicinales , Ceftazidima , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2
6.
Environ Pollut ; 311: 119679, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1906996

RESUMEN

Wastewater-based epidemiology (WBE) has emerged as a valuable approach for forecasting disease outbreaks in developed countries with a centralized sewage infrastructure. On the other hand, due to the absence of well-defined and systematic sewage networks, WBE is challenging to implement in developing countries like Bangladesh where most people live in rural areas. Identification of appropriate locations for rural Hotspot Based Sampling (HBS) and urban Drain Based Sampling (DBS) are critical to enable WBE based monitoring system. We investigated the best sampling locations from both urban and rural areas in Bangladesh after evaluating the sanitation infrastructure for forecasting COVID-19 prevalence. A total of 168 wastewater samples were collected from 14 districts of Bangladesh during each of the two peak pandemic seasons. RT-qPCR commercial kits were used to target ORF1ab and N genes. The presence of SARS-CoV-2 genetic materials was found in 98% (165/168) and 95% (160/168) wastewater samples in the first and second round sampling, respectively. Although wastewater effluents from both the marketplace and isolation center drains were found with the highest amount of genetic materials according to the mixed model, quantifiable SARS-CoV-2 RNAs were also identified in the other four sampling sites. Hence, wastewater samples of the marketplace in rural areas and isolation centers in urban areas can be considered the appropriate sampling sites to detect contagion hotspots. This is the first complete study to detect SARS-CoV-2 genetic components in wastewater samples collected from rural and urban areas for monitoring the COVID-19 pandemic. The results based on the study revealed a correlation between viral copy numbers in wastewater samples and SARS-CoV-2 positive cases reported by the Directorate General of Health Services (DGHS) as part of the national surveillance program for COVID-19 prevention. The findings of this study will help in setting strategies and guidelines for the selection of appropriate sampling sites, which will facilitate in development of comprehensive wastewater-based epidemiological systems for surveillance of rural and urban areas of low-income countries with inadequate sewage infrastructure.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Países en Desarrollo , Humanos , Pandemias , Prevalencia , Saneamiento , Aguas del Alcantarillado , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
7.
Front Immunol ; 13: 837290, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1775670

RESUMEN

SARS-CoV-2, a novel Corona virus strain, was first detected in Wuhan, China, in December 2019. As of December 16, 2021, almost 4,822,472 people had died and over 236,132,082 were infected with this lethal viral infection. It is believed that the human immune system is thought to play a critical role in the initial phase of infection when the viruses invade the host cells. Although some effective vaccines have already been on the market, researchers and many bio-pharmaceuticals are still working hard to develop a fully functional vaccine or more effective therapeutic agent against the COVID-19. Other efforts, in addition to functional vaccines, can help strengthen the immune system to defeat the corona virus infection. Herein, we have reviewed some of those proven measures, following which a more efficient immune system can be better prepared to fight viral infection. Among these, dietary supplements like- fresh vegetables and fruits offer a plentiful of vitamins and antioxidants, enabling to build of a healthy immune system. While the pharmacologically active components of medicinal plants directly aid in fighting against viral infection, supplementary supplements combined with a healthy diet will assist to regulate the immune system and will prevent viral infection. In addition, some personal habits, like- regular physical exercise, intermittent fasting, and adequate sleep, had also been proven to aid the immune system in becoming an efficient one. Maintaining each of these will strengthen the immune system, allowing innate immunity to become a more defensive and active antagonistic mechanism against corona-virus infection. However, because dietary treatments take longer to produce beneficial effects in adaptive maturation, personalized nutrition cannot be expected to have an immediate impact on the global outbreak.


Asunto(s)
COVID-19 , Suplementos Dietéticos , Humanos , Sistema Inmunológico , SARS-CoV-2 , Vitaminas/uso terapéutico
8.
Expert Rev Vaccines ; 20(12): 1651-1660, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1402224

RESUMEN

BACKGROUND: Vaccination with the Oxford-AstraZeneca COVID-19 vaccine (AZD1222) initially started in the UK and quickly implemented around the Globe, including Bangladesh. Up to date, more than nine million doses administrated to the Bangladeshi public. METHOD: Herein, we studied the antibody response to the first dose of AZD1222 in 86 Bangladeshi individuals using in-house ELISA kits. Study subjects were categorized into two groups, convalescent and uninfected, based on prior infection history and SARS-CoV-2 nucleocapsid-IgG profiles. RESULTS: All the convalescent individuals presented elevated spike-1-IgG compared to 90% of uninfected ones after the first dose. Day >28 post-vaccination, the convalescent group showed six times higher antibody titer than the uninfected ones. The most elevated antibody titers for the former and later group were found at Day 14 and Days >28 post-vaccination, respectively. The spike-1-IgA titer showed a similar pattern as spike-1-IgG, although in a low-titer. In contrast, the IgM titer did not show any significant change in either group. CONCLUSION: High antibody titer in the convalescent group, signify the importance of the first dose among the uninfected group. This study advocates the integration of antibody tests in vaccination programs in the healthcare system for maximizing benefit.


Asunto(s)
Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Vacunas contra la COVID-19/inmunología , COVID-19 , Bangladesh , ChAdOx1 nCoV-19 , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre
9.
Front Immunol ; 12: 648250, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1305642

RESUMEN

BACKGROUND: The newly identified betacoronavirus SARS-CoV-2 is the causative pathogen of the coronavirus disease of 2019 (COVID-19) that killed more than 3.5 million people till now. The cytokine storm induced in severe COVID-19 patients causes hyper-inflammation, is the primary reason for respiratory and multi-organ failure and fatality. This work uses a rational computational strategy to identify the existing drug molecules to target host pathways to reduce the cytokine storm. RESULTS: We used a "host response signature network" consist of 36 genes induced by SARS-CoV-2 infection and associated with cytokine storm. In order to attenuate the cytokine storm, potential drug molecules were searched against "host response signature network". Our study identified that drug molecule andrographolide, naturally present in a medicinal plant Andrographis paniculata, has the potential to bind with crucial proteins to block the TNF-induced NFkB1 signaling pathway responsible for cytokine storm in COVID-19 patients. The molecular docking method showed the binding of andrographolide with TNF and covalent binding with NFkB1 proteins of the TNF signaling pathway. CONCLUSION: We used a rational computational approach to repurpose existing drugs targeting host immunomodulating pathways. Our study suggests that andrographolide could bind with TNF and NFkB1 proteins, block TNF-induced cytokine storm in COVID-19 patients, and warrant further experimental validation.


Asunto(s)
Antivirales/farmacología , COVID-19/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Diterpenos/farmacología , Desarrollo de Medicamentos/métodos , SARS-CoV-2/fisiología , Andrographis/inmunología , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular , Subunidad p50 de NF-kappa B/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Tratamiento Farmacológico de COVID-19
10.
Curr Pollut Rep ; 7(2): 160-166, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1174051

RESUMEN

The episodic outbreak of COVID-19 due to SARS-CoV-2 is severely affecting the economy, and the global count of infected patients is increasing. The actual number of patients had been underestimated due to limited facilities for testing as well as asymptomatic nature of the expression of COVID-19 on individual basis. Tragically, for emerging economies with high population density, the situation has been more complex due to insufficient testing facilities for diagnosis of the disease. However, the recent reports about persistent shedding of viral RNA of SARS-CoV-2 in the human feces have created a possibility to track the prevalence and trends of the disease in communities, known as wastewater-based epidemiology (WBE). In this article, we highlight the current limitations and future prospects for WBE to manage pandemics.

11.
Food Policy ; 101: 102066, 2021 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1135329

RESUMEN

COVID-19 has threatened food security of the poor due to the lockdown of markets amidst poor institutions and lack of social safety nets in the developing world. To provide rapid evidence on the determinants and dynamics of food insecurity and to understand the coping strategies adopted by rural households during the pandemic, we carried out a telephone survey of roughly 10,000 rural households in Bangladesh, three weeks after the country went into lockdown. We found that roughly 90% of households reported experiencing a negative income shock after the countrywide lockdown was implemented. Households that primarily depend on daily casual labor for their income were affected the most, while households with regular jobs were affected the least in terms of food insecurity. Households adversely hit by income shock due to the pandemic were also found to rely more on past savings, food stocks, and loans from various sources to cope with the food crisis. When we followed-up 2402 households, about 3 to 4 weeks after the first survey, to understand the dynamics of food insecurity, we found that food insecurity increased significantly across households and began affecting groups that were in an advantageous position during the first survey. This poses a threat to the poor as food security has already worsened since the crisis hit and would presumably worsen further in the future unless rapid measures are taken to attenuate it at the earliest.

12.
Sci Total Environ ; 776: 145724, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1071917

RESUMEN

We made the first and successful attempt to detect SARS-CoV-2 genetic material in the vicinity wastewaters of an isolation centre i.e. Shaheed Bhulu Stadium, situated at Noakhali, Southeastern Bangladesh. Owing to the fact that isolation centre, in general, always contained a constant number of 200 COVID-19 patients, the prime objective of the study was to check if several drains carrying RNA of coronavirus are actually getting diluted or accumulated along with the sewage network. Our finding suggested that while the temporal variation of the genetic load decreased in small drains over the span of 50 days, the main sewer exhibited accumulation of SARS-CoV-2 RNA. Other interesting finding displays that probably distance of sampling location in meters is not likely to have a significant impact on the detected gene concentration, although the quantity of the RNA extracted in the downstream of the drain was higher. These findings are of immense value from the perspective of wastewater surveillance of COVID-19, as they largely imply that we do not need to monitor every wastewater system, and probably major drains monitoring may illustrate the city health. Perhaps, we are reporting the accumulation of SARS-CoV-2 genetic material along with the sewer network i.e. from primary to tertiary drains. The study sought further data collection in this line to simulate conditions prevailed in most of the developing countries and to shed further light on decay/accumulation processes of the genetic load of the SARS-COV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Bangladesh , Ciudades , Humanos , ARN Viral , Aguas Residuales
13.
Front Genet ; 11: 572702, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-1021887

RESUMEN

The emergence of a new coronavirus (CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for severe respiratory disease in humans termed coronavirus disease of 2019 (COVID-19), became a new global threat for health and the economy. The SARS-CoV-2 genome is about a 29,800-nucleotide-long plus-strand RNA that can form functionally important secondary and higher-order structures called cis-acting RNA elements. These elements can interact with viral proteins, host proteins, or other RNAs and be involved in regulating translation and replication processes of the viral genome and encapsidation of the virus. However, the cis-acting RNA elements and their biological roles in SARS-CoV-2 as well as their comparative analysis in the closely related viral genome have not been well explored, which is very important to understand the molecular mechanism of viral infection and pathogenies. In this study, we used a bioinformatics approach to identify the cis-acting RNA elements in the SARS-CoV-2 genome. Initially, we aligned the full genomic sequence of six different CoVs, and a phylogenetic analysis was performed to understand their evolutionary relationship. Next, we predicted the cis-acting RNA elements in the SARS-CoV-2 genome using the structRNAfinder tool. Then, we annotated the location of these cis-acting RNA elements in different genomic regions of SARS-CoV-2. After that, we analyzed the sequence conservation patterns of each cis-acting RNA element among the six CoVs. Finally, the presence of cis-acting RNA elements across different CoV genomes and their comparative analysis was performed. Our study identified 12 important cis-acting RNA elements in the SARS-CoV-2 genome; among them, Corona_FSE, Corona_pk3, and s2m are highly conserved across most of the studied CoVs, and Thr_leader, MAT2A_D, and MS2 are uniquely present in SARS-CoV-2. These RNA structure elements can be involved in viral translation, replication, and encapsidation and, therefore, can be potential targets for better treatment of COVID-19. It is imperative to further characterize these cis-acting RNA elements experimentally for a better mechanistic understanding of SARS-CoV-2 infection and therapeutic intervention.

14.
Front Immunol ; 11: 590459, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-1000088

RESUMEN

BACKGROUND: SARS-CoV-2 causes ongoing pandemic coronavirus disease of 2019 (COVID-19), infects the cells of the lower respiratory tract that leads to a cytokine storm in a significant number of patients resulting in severe pneumonia, shortness of breathing, respiratory and organ failure. Extensive studies suggested the role of Vitamin D in suppressing cytokine storm in COVID-19 and reducing viral infection; however, the precise molecular mechanism is not clearly known. In this work, bioinformatics and systems biology approaches were used to understand SARS-CoV-2 induced cytokine pathways and the potential mechanism of Vitamin D in suppressing cytokine storm and enhancing antiviral response. RESULTS: This study used transcriptome data and identified 108 differentially expressed host genes (DEHGs) in SARS-CoV-2 infected normal human bronchial epithelial (NHBE) cells compared to control. Then, the DEHGs was integrated with the human protein-protein interaction data to generate a SARS-CoV-2 induced host gene regulatory network (SiHgrn). Analysis of SiHgrn identified a sub-network "Cluster 1" with the highest MCODE score, 31 up-regulated genes, and predominantly associated immune and inflammatory response. Interestingly, the iRegulone tool identified that "Cluster 1" is under the regulation of transcription factors STAT1, STAT2, STAT3, POU2F2, and NFkB1, collectively referred to as "host response signature network". Functional enrichment analysis with NDEx revealed that the "host response signature network" is predominantly associated with critical pathways, including "cytokines and inflammatory response", "non-genomic action of Vitamin D", "the human immune response to tuberculosis", and "lung fibrosis". Finally, in-depth analysis and literature mining revealed that Vitamin D binds with its receptor and could work through two different pathways: (i) it inhibits the expression of pro-inflammatory cytokines through blocking the TNF induced NFkB1 signaling pathway; and (ii) it initiates the expression of interferon-stimulating genes (ISGs) for antiviral defense program through activating the IFN-α induced Jak-STAT signaling pathway. CONCLUSION: This comprehensive study identified the pathways associated with cytokine storm in SARS-CoV-2 infection. The proposed underlying mechanism of Vitamin D could be promising in suppressing the cytokine storm and inducing a robust antiviral response in severe COVID-19 patients. The finding in this study urgently needs further experimental validations for the suitability of Vitamin D in combination with IFN-α to control severe COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Síndrome de Liberación de Citoquinas/prevención & control , SARS-CoV-2/efectos de los fármacos , Biología de Sistemas/métodos , Vitamina D/uso terapéutico , Antivirales/uso terapéutico , Citocinas/sangre , Perfilación de la Expresión Génica , Humanos , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/prevención & control , Transcriptoma/genética
15.
J Biomol Struct Dyn ; 39(16): 6317-6323, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-664207

RESUMEN

Recent outbreak of novel coronavirus and its rapid pandemic escalation in all over the world has drawn the attention to urgent need for effective drug development. However, due to prolonged vaccine and drug development procedure against a newly emerged devastating SARS-CoV-2 virus pathogen, repurposing of existing potential pertinent drug molecules would be preferable strategy to reduce mortality immediately and further development of new drugs to combat overall global Covid-19 crisis in all over the world. Herein, we have filtered 23 prospective drug candidates through literature review. Assessing evidences from molecular docking studies, it was clearly seen that, Epirubicin, Vapreotida, and Saquinavir exhibited better binding affinity against SARS-CoV-2 Main Protease than other drug molecules among the 23 potential inhibitors. However, 50 ns molecular dynamics simulation indicated the less mobile nature of the docked complex maintaining structural integrity. Our overall prediction findings indicate that Epirubicin, Vapreotida, and Saquinavir may inhibit COVID-19 by synergistic interactions in the active cavity and those results can pave the way in drug discovery although it has to be further validated by in-vitro and in-vivo investigations.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas , Inhibidores de Proteasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA